首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   36篇
  国内免费   111篇
化学   568篇
晶体学   4篇
力学   16篇
综合类   13篇
数学   5篇
物理学   72篇
  2023年   7篇
  2022年   7篇
  2021年   18篇
  2020年   25篇
  2019年   19篇
  2018年   19篇
  2017年   19篇
  2016年   24篇
  2015年   13篇
  2014年   23篇
  2013年   39篇
  2012年   20篇
  2011年   29篇
  2010年   24篇
  2009年   21篇
  2008年   20篇
  2007年   24篇
  2006年   27篇
  2005年   25篇
  2004年   34篇
  2003年   25篇
  2002年   31篇
  2001年   22篇
  2000年   21篇
  1999年   13篇
  1998年   13篇
  1997年   16篇
  1996年   25篇
  1995年   13篇
  1994年   11篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有678条查询结果,搜索用时 78 毫秒
1.
Using Reaction Mechanism Generator (RMG), we have automatically constructed a detailed mechanism for acetylene pyrolysis, which predicts formation of polycyclic aromatic hydrocarbons (PAHs) up to pyrene. To improve the data available for formation pathways from naphthalene to pyrene, new high‐pressure limit reaction rate coefficients and species thermochemistry were calculated using a combination of electronic structure data from the literature and new quantum calculations. Pressure‐dependent kinetics for the CH potential energy surface calculated by Zádor et al. were incorporated to ensure accurate pathways for acetylene initiation reactions. After adding these new data into the RMG database, a pressure‐dependent mechanism was generated in a single RMG simulation which captures chemistry from C to C. In general, the RMG‐generated model accurately predicts major species profiles in comparison to plug‐flow reactor data from the literature. The primary shortcoming of the model is that formation of anthracene, phenanthrene, and pyrene are underpredicted, and PAHs beyond pyrene are not captured. Reaction path analysis was performed for the RMG model to identify key pathways. Notable conclusions include the importance of accounting for the acetone impurity in acetylene in accurately predicting formation of odd‐carbon species, the remarkably low contribution of acetylene dimerization to vinylacetylene or diacetylene, and the dominance of the hydrogen abstraction CH addition (HACA) mechanism in the formation pathways to all PAH species in the model. This work demonstrates the improved ability of RMG to model PAH formation, while highlighting the need for more kinetics data for elementary reaction pathways to larger PAHs.  相似文献   
2.
Hydroxide-bridged high-valent oxidants have been implicated as the active oxidants in methane monooxygenases and other oxidases that employ bimetallic clusters in their active site. To understand the properties of such species, bis-μ-hydroxo-NiII2 complex ( 1 ) supported by a new dicarboxamidate ligand (N,N′-bis(2,6-dimethyl-phenyl)-2,2-dimethylmalonamide) was prepared. Complex 1 contained a diamond core made up of two NiII ions and two bridging hydroxide ligands. Titration of the 1 e oxidant (NH4)2[CeIV(NO3)6] with 1 at −45 °C showed the formation of the high-valent species 2 and 3 , containing NiIINiIII and NiIII2 diamond cores, respectively, maintaining the bis-μ-hydroxide core. Both complexes were characterised using electron paramagnetic resonance, X-ray absorption, and electronic absorption spectroscopies. Density functional theory computations supported the spectroscopic assignments. Oxidation reactivity studies showed that bis-μ-hydroxide-NiIII2 3 was capable of oxidizing substrates at −45 °C at rates greater than that of the most reactive bis-μ-oxo-NiIII complexes reported to date.  相似文献   
3.
The permeability of aromatic hydrocarbons, i.e. BTEX and styrene, through PVC pipes was investigated using a 6-cm pipe-bottle model with direct solid-phase microextraction (SPME) sampling. It was found that an aromatic hydrocarbon with a large molecular size or low polarity may be less permeable through PVC pipes. In addition, the diffusion coefficients of BTEX and styrene in PVC pipes ranged from 4.87 to 7.64 × 10−8 cm2/s. According to the simulation results of a one-dimensional diffusion model, it is speculated that diffusion transport of benzene and toluene in PVC pipes may have non-Fickian behavior. The advantage of using the innovated test model is that SPME provides a nondestructive analytical means to monitor the concentrations of organic compounds in pipe-water. Therefore, the pipe-bottle model developed herein has potential applications in determining the resistance of polymeric pipes to permeation by solvents in the aqueous solution.  相似文献   
4.
A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation.A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments.The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments,as well as the synergistic effect between 1,3-butadiene and propyne on the formation of a series of aromatic hydrocarbons.Based on the rate of production and sensitivity analyses,key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved.The synergistic effect results from the interaction between 1,3-butadiene and propyne.The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons.Besides,the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously,which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.  相似文献   
5.
Structural rearrangements in ions are essential for understanding the composition and evolution of energetic and chemically active environments. This study explores the interconversion routes for simple polycyclic aromatic hydrocarbons, namely naphthalene and azulene radical cations (C10H8+), by combining mass spectrometry and vacuum ultraviolet tunable synchrotron radiation through the chemical monitoring technique. Products of ion-molecule reactions are used to probe C10H8+ structures that are formed as a function of their internal energies. Isomerisation from azulene radical cation towards naphthalene radical cation in a timescale faster than 80 μs was monitored, whereas no reverse isomerisation was observed in the same time window. When energising C10H8+ with more than 6 eV, the reactivity of C10H8+ unveils the formation of a new isomeric group with a contrasted reactivity compared with naphthalene and azulene cations. We tentatively assigned these structures to phenylvinylacetylene cations.  相似文献   
6.
Computational studies have often been carried out on hydrogen-terminated nanographenes (NGs). These structures are, however, far from those deduced from experimental observations, which have suggested armchair edges with two carboxy groups on the edges as dominant. We conducted computational studies on NGs consisting of C42, C60, C78, C96, C142, and C174 carbon atoms with hydrogen, carboxy, and N-methyl imide-terminated armchair edges. DFT calculations inform distorted basal planes and similar HOMO-LUMO gaps, indicating that the edge oxidation and functionalization do not very influence the electronic structure. Comparison of observed UV-vis spectra of carboxy- and N-octadecyl chain terminated NGs with calculated spectra of model NGs informs the contribution of π-π* transitions on the basal plane to the absorptions in the visible region. A dimeric structure of NG and octadecyl-installed NG demonstrate that both the distorted basal planes and the steric contacts among the functional groups widen the surface-to-surface distance thereby allowing the invasion of solvent molecules between the surfaces. This picture is consistent with the improved solubility of edge-modified NGs.  相似文献   
7.
建立了气相色谱-质谱联用技术同时测定益智药材中16种多环芳烃(PAHs)的分析方法。最佳萃取条件为:取样品2.0 g,加入同位素内标后用无水乙醇、水混合溶解,以10 mL正己烷提取;提取液先过Florisil柱固相萃取,经氢氧化钾-乙醇溶液皂化,多环芳烃分子印迹柱固相萃取后,以5 mL二氯甲烷-正己烷(1∶1,体积比)进行洗脱;采用DB-EUPAH毛细管色谱柱进行分离,内标标准曲线法定量测定。在此条件下,16种多环芳烃的线性范围为1.0~200.0 μg/L(r2 ≥ 0.992 5);检出限(S/N=3)为0.3~1.0 μg/kg;在不同浓度(1、3、10 μg/kg)基质加标条件下,苯并[c]芴(BcFL)的加标回收率为65.4%~72.8%,日内相对标准偏差(RSD,n=6)为6.0%~7.4%,日间RSD(n=6)为8.5%;其他15种多环芳烃的加标回收率为89.3%~116%,日内RSD(n=6)为0.10%~6.1%,日间RSD(n=6)为1.2%~7.5%。该方法的前处理净化效果好、灵敏度高、准确度高,适用于益智药材中16种多环芳烃的定量检测。  相似文献   
8.
The synergism/inhibition level, solubilization sites and the total solubility (St) of co-solubilization systems of phenanthrene, anthracene and pyrene in Tween 80 and sodium dodecyl sulfate (SDS) are studied by 1H-NMR, 2D nuclear overhauser effect spectroscopy (NOESY) and rotating frame overhauser effect spectroscopy (ROESY). In Tween 80, inhibition for phenanthrene, anthracene and pyrene is observed in most binary and ternary systems. However, in SDS, synergism is predominant. After analysis, we find that the different synergism or inhibition situation between Tween 80 and SDS is related to the different types of surfactants used and the resulting different co-solubilization mechanisms. In addition, we also find that three polycyclic aromatic hydrocarbons (PAHs) have similar solubilization sites in both Tween 80 and SDS, which are almost unchanged in co-solubilization systems. Due to the similar solubilization sites, the chemical shift changes of surfactant and PAH protons follow the same pattern in all solubilization systems, and the order of chemical shift changes is consistent with the order of changes in the St of PAHs. In this case, it is feasible to evaluate St of PAHs by chemical shift. In both Tween 80 and SDS solutions, the ternary solubilization system has relatively high St rankings. Therefore, in practical applications, a good overall solubilization effect can be expected.  相似文献   
9.
Two of the most challenging problems that scientists and researchers face when they want to experiment with new cutting‐edge algorithms are the time‐consuming for encoding and the difficulties for linking them with other technologies and devices. In that sense, this article introduces the artificial organic networks toolkit for LabVIEW? (AON‐TL) from the implementation point of view. The toolkit is based on the framework provided by the artificial organic networks technique, giving it the potential to add new algorithms in the future based on this technique. Moreover, the toolkit inherits both the rapid prototyping and the easy‐to‐use characteristics of the LabVIEW? software (e.g., graphical programming, transparent usage of other softwares and devices, built‐in programming event‐driven for user interfaces), to make it simple for the end‐user. In fact, the article describes the global architecture of the toolkit, with particular emphasis in the software implementation of the so‐called artificial hydrocarbon networks algorithm. Lastly, the article includes two case studies for engineering purposes (i.e., sensor characterization) and chemistry applications (i.e., blood–brain barrier partitioning data model) to show the usage of the toolkit and the potential scalability of the artificial organic networks technique. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
γ‐Glutamyltranspeptidase (GGT) is a tumor biomarker that selectively catalyzes the cleavage of glutamate overexpressed on the plasma membrane of tumor cells. Here, we developed two novel fluorescent in situ targeting (FIST) probes that specifically target GGT in tumor cells, which comprise 1) a GGT‐specific substrate unit (GSH), and 2) a boron–dipyrromethene (BODIPY) moiety for fluorescent signalling. In the presence of GGT, sulfur‐substituted BODIPY was converted to amino‐substituted BODIPY, resulting in dramatic fluorescence variations. By exploiting this enzyme‐triggered photophysical property, we employed these FIST probes to monitor the GGT activity in living cells, which showed remarkable differentiation between ovarian cancer cells and normal cells. These probes represent two first‐generation chemodosimeters featuring enzyme‐mediated rapid, irreversible aromatic hydrocarbon transfer between the sulfur and nitrogen atoms accompanied by switching of photophysical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号